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Abstract
We investigate the bi-Hamiltonian structure of the waterbag model of
dispersionless K (dKP) for the two-component case. One can establish the
third- and first-order Hamiltonian operators associated with the waterbag
model. Also, the dispersive corrections are discussed.
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1. Introduction

The dispersionless KP hierarchy (dKP or Benney moment chain) is defined by

∂tnλ(p) = {λ(p), Bn(p)}, n = 1, 2, . . . , (1)

where the Lax operator λ(p) is

λ(p) = p +
∞∑
1

vn+1p
−n (2)

and it can be used to define a set of polynomials:

Bn(p) = [λn(p)]+

n
, i = 1, 2, 3, . . . , t1 = x.

Here [· · ·]+ denotes a non-negative part of the Laurent series λn(p). For example,

B2 = p2

2
+ v2, B3 = p3

3
+ v2p + v3.

Moreover, the bracket in (1) stands for the natural Poisson bracket on the space of functions
of the two variables (x, p):

{f (x, p), g(x, p)} = ∂xf ∂pg − ∂xg∂pf. (3)

The compatibility of (1) will imply the zero-curvature equation

∂mBn(p) − ∂nBm(p) = {Bn(p), Bm(p)}. (4)
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If we denote t2 = y and t3 = t , then equation (4) for m = 2, n = 3 gives

v3x = v2y, v3y = v2t − v2v2x,

from which the dKP equation is derived (v2 = v)

vyy = (vt − vvx)x. (5)

According to the dKP theory [1, 18, 22, 37], there exists a wavefunction S(λ, x, t2, t3, . . .)

such that p = Sx and satisfies the Hamiltonian–Jacobian equation

∂S

∂tn
= Bn(p)|p=Sx

. (6)

It can be seen that the compatibility of (6) also implies the zero-curvature equation (4). Now,
we expand Bn(p) as

Bn(p(λ)) = [λn(p)]+

n
= λn

n
−

∞∑
i=0

Ginλ
−i−1,

where the coefficients can be calculated by the residue form,

Gin = −resλ=∞(λiBn(p) dλ) = 1

i + 1
resp=∞

(
λi+1 ∂Bn(p)

∂p
dp

)
,

which also shows the symmetry property

Gin = Gni.

Moreover, from
∂Bm(λ)

∂tn
= ∂Bn(λ)

∂tm

this implies the integrability of Gin as expressed in terms of the free energy F (dispersionless
τ function) [37]

Gin = ∂2F
∂ti∂tn

.

For example, the series inverse to (2) is

p = λ − F11

λ
− F12

2λ2
− F13

3λ3
− F14

4λ4
− · · · , (7)

where F1n are polynomials of v2, v3, . . . , vn+1 and in fact

hn ≡ F1n

n
= resp=∞

λn

n
dp

are the conserved densities for the dKP hierarchy (1). In [5, 6], it is proved that dKP hierarchy
(1) is equivalent to the dispersionless Hirota equation

D(λ)S(λ′) = −log
p(λ) − p(λ′)

λ
, (8)

where D(λ) is the operator
∑∞

n=1
1

nλn
∂

∂tn
.

Next, we consider the symmetry constraint [3, 4]

Fx =
n∑

i=1

ci(Si − S̃i ), (9)

where Si = S(λi) and S̃i = S(λ̃i), λi, λ̃i are some sets of points, and ci are arbitrary constants.
Note that from (7) we know

D(λ)Fx = λ − p.
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On the other hand, by (8) and (9), we also have

D(λ)Fx = D(λ)

N∑
i=1

ci(Si − S̃i ) =
N∑

i=1

ci(D(λ)Si − D(λ)S̃i)

= −
N∑

i=1

ci log
p − pi

p − p̃i

,

where p = p(λ), pi = p(λi) and p̃i = p(λ̃i).

Hence we obtain the non-algebraic reduction (‘waterbag’ model) [3, 16] of dKP hierarchy

λ = p −
N∑

i=1

ci log
p − pi

p − p̃i

= p +
∞∑

s=1

vs+1p
−s , (10)

where

vs+1 =
N∑

i=1

ci

(
ps

i − p̃s
i

)
s

. (11)

One remarks that in the limit λ̃i = λi + εi, εi → 0, keeping ciεi = di to be constant, the
Sato function (10) reproduces the Zakharov’s reduction [38]

λ = p +
d1

p − p̃1
+

d2

p − p̃2
+ · · · +

dN

p − p̃N

, (12)

which is the algebraic reduction of dKP hierarchy.
From (10), we have

B2(p) = 1

2
p2 +

N∑
i=1

ci(pi − p̃i).

So (t2 = y)

∂yλ =
{

λ,

N∑
i=1

ci(pi − p̃i)

}
.

This will imply

∂ypλ = ∂x

[
1

2
p2

λ +
N∑

i=1

ci(pi − p̃i)

]
∂yp̃λ = ∂x

[
1

2
p̃2

λ +
N∑

i=1

ci(pi − p̃i)

]
. (13)

For simplicity, in this paper we only consider the case N = 1, i.e.,

∂yp1 = ∂x

[
1
2p2

1 + c1(p1 − p̃1)
]

∂yp̃1 = ∂x

[
1
2 p̃2

1 + c1(p1 − p̃1)
]
, (14)

and the Lax operator (10) is truncated to become

λ = p − c1 log
p − p1

p − p̃1
. (15)

Equation (14) can also be written as the Hamiltonian system[
p1y

p̃1y

]
=
[ 1

c1
0

0 − 1
c1

]
∂x

[
δH3
δp1

δH3
δp̃1

]
,

where δ is the variation derivative and

H3 = 1

3

∫
dx
[
c1
(
p3

1 − p̃3
1

)
+ 3c2

1(p1 − p̃1)
2].
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A bi-Hamiltonian structure is defined as (for the case of dKP)[
p1y

p̃1y

]
= J1

[
δH3
δp1

δH3
δp̃1

]
= J2

[
δH
δp1

δH
δp̃1

]
,

where

J1 =
[ 1

c1
0

0 − 1
c1

]
∂x

and H is some Hamiltonian such that J2 is also a Hamiltonian operator (Jacobi identity), which
is compatible with J1, i.e., J1 + cJ2 is also a Hamiltonian one for any complex number c [12,
13, 23, 29]. We hope to find J2 and the related Hamiltonian H.

Besides, from (11) and (15) we know that v2 = v = p1 − p̃1. Then by the theory
of symmetry constraints of KP [8, 20, 21, 35] hierarchy one can consider the dispersive
corrections for the waterbag model (15).

This paper is organized as follows. In the next section, we construct the third-order
bi-Hamiltonian structure. Section 3 is devoted to establishing first-order bi-Hamiltonian
structure using WDVV equation in topological field theory. In section 4, we discuss the
dispersive corrections. In the final section, one discusses some problems to be investigated.

2. Third-order bi-Hamiltonian structure

In this section, we investigate the bi-Hamiltonian structure of the two-component case (14).
To find the bi-Hamiltonian structure, one can introduce the coordinates

u = p1 + p̃1, v = p1 − p̃1

to rewrite equation (14) as(
u

v

)
y

=
(

u2+v2

4 + 2c1v

uv
2

)
x

= 1

c1

(
0 Dx

Dx 0

)(
δH3
δu

δH3
δv

)
, (16)

where

H3 = 1

3

∫
dx
[
c1
(
p3

1 − p̃3
1

)
+ 3c2

1(p1 − p̃1)
2
]

= 1

3

∫
dx

[
c1

3u2v + v3

4
+ 3c2

1v
2

]
=
∫

dxh3

and δ is the variational derivative. One can observe that the conserved density

h3 = 1

3

[
c1

3u2v + v3

4
+ 3c2

1v
2

]
has the separable property

∂2h3

∂u2

/
∂2h3

∂v2
= c1v

2

/(c1v

2
+ 2c2

1

)
= 1

µ(v)
,

where

µ(v) = v + 4c1

v
= 1 +

4c1

v
.
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Hence we can identify equation (16) as the generalized gas dynamic Hamiltonian system or
separable Hamiltonian system [32, 34]. Therefore, according to the separable Hamiltonian
theory in [2, 32], we know that the third-order Hamiltonian operator

J2 = DxU
−1
x DxU

−1
x σDx,

where

Ux =
(

ux µ(v)vx

vx ux

)
and σ =

(
0 1

1 0

)
,

or

U−1
x = 1

u2
x − µ(v)v2

x

(
ux −µ(v)vx

−vx ux

)
,

is compatible with the first-order Hamiltonian operator

J1 =
(

0 Dx

Dx 0

)
= σDx.

So we can write equation (16) as the bi-Hamiltonian structure(
u

v

)
y

= 1

c1
J1

(
δH3
δu

δH3
δv

)
= 1

c1
J2

(
δH5
3δu

δH5
3δv

)

= 1

c1
Dx

(
h5,uuv

3
h5,vvu

3

)
,

where

H5 =
∫

h5 dx = 1

5

∫
resp=∞(λ5 dp) dx

= 1

5

∫ {
c1
(
p5

1 − p̃5
1

)
+ 10c3

1(p1 − p̃1)
3 +

20

3
c2

1(p1 − p̃1)
(
p3

1 − p̃3
1

)
+

5

2
c2

1

(
p2

1 − p̃2
1

)2}
dx

= 1

5

∫ {
c1

16
(5u4v + 10u2v3 + v5) + 10c3

1v
3 +

15

2
c2

1u
2v2 +

5

3
c2

1v
4

}
dx.

Next, we will find all the conserved density F(u, v) of equation (16). It is not difficult to
see that

∫
F(u, v) dx is a conserved quantity if and only if F(u, v) satisfies the wave equation

Fuu = Fvv

µ(v)
. (17)

The wave equation (17) leads to two fundamental hierarchies of conserved densities [32, 34]

FN =
[ N

2 ]∑
n=0

uN−2n

(N − 2n)!

(
∂−2
v µ(v)

)n · v F̃ N =
[ N+1

2 ]∑
n=0

uN+1−2n

(N + 1 − 2n)!

(
∂−2
v µ(v)

)n · 1. (18)

Here ∂−1
v = ∫ v

0 dv and ∂−1
v acts on all the factors standing to the right of it. For example,

(
∂−2
v µ(v)

)2 · v =
∫ v

0
dv

∫ v

0

[
µ(v)

∫ v

0
dv

∫ v

0
vµ(v) dv

]
dv.
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For reference, we list the first few members of each sequence in the generalized gas
dynamic system (16):

(
µ(v) = 1 + 4c1

v

)
F0 = v, F1 = uv

F2 = 1

2
u2v +

1

6
v3 + 2c1v

2 F3 = 1

6
u3v + u

(
1

6
v3 + 2c1v

2

)

F4 = 1

24
u4v +

u2

2

(
1

6
v3 + 2c1v

2

)
+

(
1

120
v5 +

2

9
c1v

4 +
4

3
c2

1v
3

)
and

F̃ 0 = u, F̃ 1 = 1

2
u2 +

1

2
v2 + 4c1(v ln v − v)

F̃ 2 = 1

6
u3 + u

[
1

2
v2 + 4c1(v ln v − v)

]

F̃ 3 = 1

24
u4 +

1

2
u2

[
1

2
v2 + 4c1(v ln v − v)

]

+
1

24
v4 +

2

3
c1v

3 ln v − 8

9
c1v

3 + 8c2
1v

2 ln v − 20c2
1v

2

F̃ 4 = 1

120
u5 +

1

6
u3

[
1

2
v2 + 4c1(v ln v − v)

]

+ u

[
1

24
v4 +

2

3
c1v

3 ln v − 8

9
c1v

3 + 8c2
1v

2 ln v − 20c2
1v

2

]
.

In fact, one can see that

FN−1 = 2N−1

c1(N − 1)!
hN = 2N−1

c1N !
resp=∞(λN dp), N � 1 (19)

and from (18) we also have (for N � 1)

∂FN

∂u
= FN−1,

∂F̃ N

∂u
= F̃ N−1 (20)

Moreover, we note that the recursion operator

R̂ = J2J
−1
1 = DxU

−1
x DxU

−1
x (21)

is the square of a simpler first-order recursion operator

R = DxU
−1
x .

Then we can easily check that, using (17) and (20),

R−1σD

(
∂FN

∂u

∂FN

∂v

)
= R−1

(
∂FN

∂v

∂FN

∂u

)
x

= Ux

(
∂FN

∂v

∂FN

∂u

)

=
(

∂FN+1
∂v

∂FN+1
∂u

)
x

= σD

(
∂FN+1

∂u

∂FN+1
∂v

)
,
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and similarly for F̃ N . Hence the dKP hierarchy of (16) can be obtained using the recursion
operator, i.e., (

u

v

)
tn

= (R−1)n−2 σ

c1
D

(
∂h3
∂u

∂h3
∂v

)
, n � 2.

However, the Lax representation of hierarchy generated by F̃ N is not found.
Also, using the recursion operator (21), one can construct a hierarchy of higher order

Hamiltonian densities F̂ m,m = 1, 2, 3, . . . , with m indicating the order of derivatives on
which they depend, and the corresponding commuting bi-Hamiltonian system [31]:(

u

v

)
τm

= R̂m

(
1

0

)
= J1

(
δF̂ m

δu

δF̂m

δv

)
= J2

(
δF̂ m−1

δu

δF̂m−1

δv

)
, (22)

where

F̂ 0 =
∫

xv dx

F̂ 1 = −1

2

∫
vx

u2
x − µ(v)v2

x

dx = −1

2

∫
vx

u2
x − (1 + 4c1

v

)
v2

x

dx.

All the flows of (22) will commute with the generalized gas dynamic system (16). For example,
for n = 1, we have, after a simple calculation,(

u

v

)
τ1

= R̂

(
1
0

)
=




µ2v3
xvxx+3µu2

xvxvxx+µµ′v5
x+µ′u2

xv
3
x−u3

xuxx−3µv2
xuxuxx

(u2
x−µv2

x)
3

µv3
xuxx+3u2

xvxuxx−vxxu
3
x−3µv2

xuxvxx−2µ′uxv
4
x

(u2
x−µv2

x)
3




x

,

where

µ′ = dµ

dv
= −4c1

v2
.

Finally, one remarks that there exists a Lagrangian local in the velocity fields for
equation (16) (up to a scaling):

L = vxut − uxvt

u2
x − µv2

x

− 2v.

The local Lagrangian will exist in bi-Hamiltonian structure with a pair of first- and third-order
Hamiltonian operators [30, 32].

3. Free energy and bi-Hamiltonian structure

In this section, we investigate the relations between bi-Hamiltonian structure and free energy.
Then the compatible first-order Hamiltonian operators can be constructed.

Now, we want to find the free energy associated with the dKP hierarchy (1) for the Lax
operator of the form (15). Suppose we are given two first-order Hamiltonian operators Ĵ 1 and
Ĵ 2 (∂ = ∂x)

Ĵ 1 =
(

0 1

1 0

)
∂

def= η
ij

1 ∂

Ĵ 2 =
(

g11(t) g12(t)

g21(t) g22(t)

)
∂ +

(
�11

1 (t) �12
1 (t)

�21
1 (t) �22

1 (t)

)
t1
x +

(
�11

2 (t) �12
2 (t)

�21
2 (t) �22

2 (t)

)
t2
x

def= gij (t)∂ + �
ij

k (t)tkx .
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They are both Poisson brackets of hydrodynamic type introduced by Dubrovin and Novikov
[10, 11]. The bi-Hamiltonian structure means that Ĵ 1 and Ĵ 2 have to be compatible, i.e.,
Ĵ = Ĵ 1 + αĴ 2 must also be a Hamiltonian structure for all values of α. This compatibility
condition implies that, for any α, the metric is referred to as flat pencil. The geometric setting
in which to understand flat pencil (or the bi-Hamiltonian structure of a hydrodynamic system)
is the Frobenius manifold [12–15]. One way to define such manifolds is to construct a function
F(t1, t2, . . . , tm) such that the associated functions,

cijk = ∂3F

∂t i∂tj ∂tk
,

satisfy the following conditions.

• The matrix ηij = c1ij is constant and non-degenerate. This together with the inverse
matrix ηij are used to raise and lower indices. On such a manifold one may interpret ηij

as a flat metric.
• The functions ci

jk = ηircrjk define an associative commutative algebra with a unity
element. This defines a Frobenius algebra on each tangent space T tM.

Equations of associativity give a system of nonlinear PDE for F(t)

∂3F(t)

∂tα∂tβ∂tλ
ηλµ ∂3F(t)

∂tµ∂tγ ∂tσ
= ∂3F(t)

∂tα∂tγ ∂tλ
ηλµ ∂3F(t)

∂tµ∂tβ∂tσ
.

These equations constitute the Witten–Dijkgraaf–Verlinde–Verlinde (or WDVV) equations.
On such a manifold one may introduce a second flat metric defined by

gij = ∂i∂j
F + ∂j ∂i

F, (23)

where

∂i = ηiς∂tς

and the contravariant Levi-Civita connection is

�
ij

k = ∂i∂j ∂tk F. (24)

This metric, together with the original metric ηij , define a flat pencil (i.e, ηij + αgij is flat for
any value of α). Thus, one automatically obtains a bi-Hamiltonian structure from a Frobenius
manifold M. The corresponding Hamiltonian densities are defined recursively by the formula

∂2ψ(n)
α

∂t i∂tj
= ck

ij

∂ψ(n−1)
α

∂tk
, (25)

where n � 1, α = 1, 2, . . . , m, and ψ0
α = ηαεt

ε . The integrability conditions for this systems
are automatically satisfied when the ck

ij are defined as above.
For the waterbag hierarchy (1) and (15), it is obvious that

t1 = u = ψ
(o)
2 , t2 = v = ψ

(0)
1

and those ck
ij can be determined by (25)

∂2ψ
(n)
1

∂t i∂tj
= ck

ij

∂ψ
(n−1)
1

∂tk
,

where, using (19),

ψ
(n)
1 = Fn = 2n

c1(n + 1)!
resp=∞(λn+1 dp), n � 0.
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Simple calculations can get

c1
11 = 1, c1

12 = c1
21 = 0, c1

22 = 1 +
4c1

t2
= µ(v),

c2
11 = c2

22 = 0, c2
21 = c2

12 = 1.

(26)

By (26), we can get immediately free energy

F(t1, t2) = 1
2 (t1)2t2 + 2c1(t

2)2 log t2 + 1
6 (t2)3 + quadratic terms. (27)

We note that the free energy (27) has no quasi-homogeneity condition and, however, the free
energy associated with the Benney hierarchy is quasi-homogeneous [7].

After choosing suitable quadratic terms, then from the free energy (27), using (23) and
(24), one can construct Ĵ 2 as follows:

Ĵ 2 =
(

2t2 2t1

2t1 2t2

)
∂ +

(
0 1

1 0

)
t1
x +

(
1 0

0 1

)
t2
x

=
(

t2∂x + ∂xt
2 t1∂x + ∂xt

1

t1∂x + ∂xt
1 t2∂x + ∂xt

2

)
.

Here we remove the non-analytic part of gij , i.e., ln t2. Also, one can verify directly that Ĵ 2

is a Hamiltonian operator and is compatible with Ĵ 1. We note that the constant c1 will not
appear in Ĵ 2.

Now, using the recursion operator

R̂ = Ĵ 2Ĵ
−1
1 =

(
t1 + ∂xt

1∂−1
x t2 + ∂xt

2∂−1
x

t2 + ∂xt
2∂−1

x t1 + ∂xt
1∂−1

x

)
,

one can construct a hierarchy by(
t1

t2

)
τ̃m

= R̂
m

(
t1

6

t2

6

)
x

, m � 1. (28)

For example, for m = 1 and m = 2, a simple calculation can yield(
t1

t2

)
τ̃1

= R̂

(
t1

6

t2

6

)
x

=
(

1
4 [(t1)2 + (t2)2]

1
2 t1t2

)
x

,

(
t1

t2

)
τ̃2

= R̂
2

(
t1

6

t2

6

)
x

= 5

(
1

12 (t1)3 + 1
4 t1(t2)2

1
12 (t2)3 + 1

4 t2(t1)2

)
x

,

which are slightly different from y flow (16) and t3 (or t) flow of the dKP hierarchy (1),
respectively:(

t1

t2

)
t

= 2

3c1
J1

(
δH4
δt1

δH4
δt2

)
=
(

1
12 (t1)3 + 1

4 t1(t2)2 + 2c1t
1t2

1
12 (t2)3 + 1

4 t2(t1)2 + c1(t
2)2

)
x

, (29)

where

H4 =
∫

h4 dx = 1

4

∫ {
c1

[
(t1)3t2 + (t2)3t1

2

]
+ 6c2

1t
1(t2)2

}
dx.

By comparisons between them, one can see that the non-homogeneous terms (or higher-order
c1 terms) of the waterbag hierarchy could be removed in the hierarchy (28). In this way, one
can say that the hierarchy (28) is perturbed, up to some scalings, by the waterbag hierarchy
with a perturbation parameter c1.
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Remark. According to the Kodama–Gibbons formulation [18], the Riemann invariants λ1, λ2

of (29) are given by

λ1 = λ(u1) = t1 +
√

(t2)2 + 4c1t2

2
− c1 ln

√
(t2)2 + 4c1t2 − t2√
(t2)2 + 4c1t2 + t2

λ2 = λ(u2) = t1 −
√

(t2)2 + 4c1t2

2
+ c1 ln

√
(t2)2 + 4c1t2 − t2√
(t2)2 + 4c1t2 + t2

,

(30)

where u1 and u2 are the real roots of dλ
dp

|p=u1,u2 = 0, i.e.,

u1 = t1 +
√

(t2)2 + 4c1t2

2
, u2 = t1 −

√
(t2)2 + 4c1t2

2
,

and the characteristic speeds are

v̂1 = d�3(p)

dp

∣∣∣
p=u1

, v̂2 = d�3(p)

dp

∣∣∣
p=u2

.

Then equation (29) can be written as(
λ1

λ2

)
t

=
(

v̂1 0

0 v̂2

)(
λ1

λ2

)
x

. (31)

Also, a simple calculation shows that, using (31), the flat metric (ds)2 = dt1 dt2 becomes, in
Riemann’s invariants,

(ds)2 = η11(t)(dλ1)
2 + η22(t)(dλ2)

2,

where

η11(t) = resp1

(dp)2

dλ
= 1

d2λ
dp2

∣∣
p=u1

= t2√
(t2)2 + 4t2c1

η22(t) = resp2

(dp)2

dλ
= 1

d2λ
dp2

∣∣
p=u2

= − t2√
(t2)2 + 4t2c1

.

Since it is known that waterbag reduction (15) is not scaling invariant [16], we can verify that
the metric

(ds̃)2 = η11

u1
(dλ1)

2 +
η22

u2
(dλ2)

2

= t2

4
(dt1)2 +

t1

2
dt1 dt2 +

(
t2

4
+ c1

)
(dt2)2 (32)

is no more flat [15]. Hence from the theory of Darboux–Egrov metric [12], one believes
that there is no first-order bi-Hamiltonian structure for (29)(or (16)). However, we know that
(31) is (semi-)Hamiltonian [16, 33] and it probably will have a compatible non-local Poisson
brackets of hydrodynamic type [24–28], deserving further investigations.

Finally, one notes that the metric (32) can also be obtained using the free energy (27)

F(t1, t2) = 1
2 (t1)2t2 + 2c1(t

2)2 log t2 + 1
6 (t2)3 + 2c1(t

1)2.
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4. Dispersive corrections

In this section, one will investigate the dispersive corrections of the waterbag model from the
theory of symmetry constraints of KP hierarchy. Simple calculations show that the special
symmetry constraint corresponding to the waterbag model is not admissible.

Let us briefly describe the KP hierarchy [9]. The Lax operator of KP hierarchy is

L = ∂X +
∞∑

n=1

Vn+1∂
−n
X ,

and the KP hierarchy is determined by the Lax equation
(
∂n = ∂

∂Tn
, T1 = X

)
∂nL = [Bn,L],

where Bn = 1
n
Ln

+ is the differential part of Ln. For example (T2 = Y, T3 = T )

V2Y = V2XX

2
+ V3X (33)

V3Y = 1

2
V3XX + V4X + V2V2X (34)

V2T = 1

3
V2XXX + V3XX + V4X + 2V2V2X. (35)

Eliminating V3 and V4, we can obtain the KP equation (V2 = V )

VT = 1
4VXXX + V VX + ∂−1

X VYY , (36)

which also can be described as the compatibility condition for the eigenfunction φ

φY = ( 1
2∂2

X + V
)
φ φT = ( 1

3∂3
X + V ∂ + V3 + VX

)
φ. (37)

To get dKP equation (5), one simply takes Tn → εTn = tn in the KP equation (36) , with

∂Tn
→ ε∂tn and V (Tn) → v(tn),

to obtain the dKP equation when ε → 0. Thus the dispersive term 1
4VXXX is removed.

Moreover, letting

φ = exp
S

ε

in (37), we also have equation (6) for n = 2, 3

Sy = 1
2S2

x + v2 St = 1
3S3

x + v2Sx + v3

when ε → 0. The compatibility Sty = Syt will yield the dKP equation (5).
Since v = p1 − p̃1, from the theory of symmetry constraints of KP hierarchy [20, 21],

one can assume the natural symmetry constraint

V = [1 − f (∂X)]−1[ln φ1 − ln φ2]X (38)

where

f (∂X) = a1∂X + a2∂
2
X + · · · + an∂

n
X, ai being constants.

Here φ1 and φ2 are arbitrary eigenfunctions, i.e., they both satisfy equations (37). We remark
that if φ1 = exp S1

ε
, φ2 = exp S2

ε
and X → εX = x, then V (X, Y, T ) → v(x, y, t) =

p1 − p̃1, where

p1 = S1x, p̃1 = p2 = S2x

when ε → 0.
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Then equations (37) become, i = 1, 2,

φiY = 1
2φiXX + {[1 − f (∂X)]−1(ln φ1 − ln φ2)X}φi (39)

φiT = 1
3φiXXX + {[1 − f (∂X)]−1(ln φ1 − ln φ2)X}φiX

+ [V3 + {[1 − f (∂X)]−1(ln φ1 − ln φ2)XX}]φi. (40)

Then from (33) and (34) and (39), one can get

V3 = 1
2 [1 − f (∂X)]−1{[(ln φ1)X]2 − [(ln φ2)X]2}

V4 = 1
3 [1 − f (∂X)]−1{[(ln φ1)X]3 − [(ln φ2)X]3 + 3[f (∂X)V 2] − 3V [f (∂X)V ]}.

Both the dispersionless limits of V3 and V4 are v3 = p2
1−p̃2

1
2 and v4 = p3

1−p̃3
1

3 .
Now, using (35) and (40), a lengthy calculation shows that

[(ln φ1)XX]2 − [(ln φ2)XX]2

2
= V [f (∂X)VX] − f (∂X)(V VX), (41)

which is an contradiction since φ1 and φ2 are arbitrary eigenfunctions. This means that (40)
is not a higher-order Lie–Backlund symmetry of (39) or the constraint (38) is not admissable
[20, 35]. For example, letting f (∂X) = 0 and ∂X, equation (41) becomes

(ln φ1)XX]2 − [(ln φ2)XX]2 = 0

and

[(ln φ1)XX]2 − [(ln φ2)XX]2 = −2V 2
X

respectively, both of which put constraints on φ1 and φ2 and are contradictions.
Finally, one notes that constraint (38) is not involved in adjoint eigenfunction and then it

does not belong to the class considered in [21].

5. Concluding remarks

We have investigated the bi-Hamiltonian structure and dispersive corrections of the waterbag
model for two components. After introducing suitable coordinates, one can identify (16) as
a separable Hamiltonian system and thus a third-order bi-Hamiltonian structure is obtained.
Also, using the recursion relation of conserved densities, we can find the free energy associated
with waterbag model in WDVV equation of the topological field theory and thus establish the
first-order bi-Hamiltonian structure. But the hierarchy constructed by the recursion operator is
not the same as the waterbag hierarchy. Also, one considers the dispersive corrections from the
theory of symmetric constraints of KP theory. Some calculations show that these dispersive
corrections are not admissible. Finally, one remarks that the solutions of the waterbag model
can be found using the hodograph method in [18, 19].

Several questions remain to be overcome. Firstly, from the theory of non-local Poisson
brackets of hydrodynamic type [26, 28], one believes the bi-Hamiltonian structure of (29)
(or (16)) deserves further investigations, especially that the free energy (27) is not quasi-
homogeneous. Secondly, as we see in section 4, the integrable dispersive corrections of the
waterbag model are still unknown. The main difficulty is in the quantization of the Lax
operator (10), i.e., p → ∂X. The exact form is not clear and needs further investigations [36].
Ultimately, we hope to generalize the results in section 2 to the general case, for example,
the four-component case. But the computation is more involved. One hopes to address these
questions elsewhere.
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